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Abstract
The performance of a combinatorial simultaneous optimization (SO) algorithm is tested using
experimental LEED I (E) data from Cu(100) and Fe0.57Al0.47(100) surfaces. SO optimizes
structures taking advantage of the experimental database at two levels: (i) commensurate
subsets of the database with the number of unknown parameters are chosen to find local
solutions using Broyden’s method and (ii) these partial structural solutions are used to build a
Markov chain over the whole database. This procedure is of global character, the same as
simulated annealing or genetic algorithm methods, but displays a very competitive scaling law
because after the first iteration candidates are not chosen by a blind/random pick; they are
already solutions to the problem with a restricted experimental database.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Most properties of surfaces (e.g. their reactivity) are
strongly influenced by their structure. A number of
diffraction techniques, such as low-energy electron diffraction
(LEED) [1–3], photoelectron diffraction (PD) [4], surface x-
ray diffraction (SXRD), [5, 6], near-edge x-ray absorption
fine structure (NEXAFS), [7] etc [1, 2, 8, 9] have been
developed in surface science to find this structure with atomic
accuracy. Among these techniques, LEED plays a prominent
role in the field due to similar progress made in experimental
and theoretical techniques, and nowadays is a technique that
can be found in nearly every surface science laboratory.
Experimental intensities for different Bragg beams diffracted
from the surface are measured as a function of the energy of
the primary beam of electrons; these carry the information on
the geometrical position of atoms in the surface.

Diffraction amplitudes are complex-number functions of
the parameters defining the structure; these functions may
be multivalued and their inverse has to be found inside the
physically appropriate Riemann sheet (the existence of several
branches is usually referred to in the literature as ‘multiple
coincidences’). In principle nothing prohibits us from finding
the inversion algorithm linking the structure and the measured
intensities, which would provide us with the geometrical

parameters in just one single step. In practice, several
technical problems make this a difficult program; we shall only
mention the following two difficulties: (1) the impossibility of
measuring the diffracted wavefield phase makes the inversion
difficult as a great deal of information is carried away with the
phase itself and, (2) the strong interaction between the incident
wavefield with the surface electrons, i.e. multiple scattering,
makes the direct/inverse functions highly nonlinear, and
quite difficult to localize the physically meaningful branches.
Therefore, the standard approach over the years has been to
minimize a cost function, the so-called R-factor, designed to
quantify the agreement/discrepancy between experimental and
calculated spectra. This in turn is not free of complications
because the R-factor is a scalar function of a vector argument
defining all the structural and non-structural parameters needed
to define the system, leading to a non-polynomial scenario in
the search for the global minimum that could only be solved
with complete certainty in an infinite amount of searching
time. We should mention here how Professor John Pendry and
his collaborators have led the way in identifying and finding
solutions to all the aforementioned fundamental problems for
the LEED technique [1, 10–13].

In this paper we analyse a new route to overcome the
intrinsic non-polynomial (NP) nature of traditional LEED
analysis based on the use of an R-factor, in particular Pendry’s
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R-factor [11]. The method is applied to experimental data,
and its performance is compared with state-of-the-art solutions
proposed in the literature. More precisely, we want to
solve the following problem. If we let N be the number
of parameters defining the structure the R-factor is a scalar
function defined in �N . In general, this hypersurface displays
a complex topography, showing several local minima. If we
intend to find out its global minimum by a simple brute force
search, i.e. evaluating the R-factor for every point of a grid
in parameter space, we find that the number of trial model
structures, t , scales exponentially with N . In the case of a grid
where the number of values in each of the N dimensions is
equal to n p, t = nN

p structures should be tried. Because the
time needed to find the structure scales exponentially with the
number of unknown parameters, optimization theory classifies
this as a non-polynomial or NP-complete problem [13]. In
particular, if we carry out an exhaustive search on a continuous
interval of length L for each parameter, making sure that the
solution is at the worst case at a maximum distance ε from the
true solution, we obtain:

t �
(

L
√

N

ε

)N

. (1)

For high N values, this scaling law, t ∼ N N/2, is even worse
than the exponential law that appears in the grid case.

We will restrict ourselves to the determination of an
ordered surface structure from quantitative LEED. For a
single incidence direction, the database is formed by a set
of I (E) curves. These are intensity versus energy curves,
one per reflection or ‘beam’. For a given model surface,
the accurate evaluation of I (E) requires using a multiple
scattering formalism, which is computationally expensive.
Improvements in LEED I (E) analysis efficiency made so far
have been focused in the development of efficient intensity
evaluation methods, such as Tensor-LEED (TLEED) [12], and
in the development of algorithms that reduce the number of
intensity evaluations during the optimization procedure. The
present paper deals with the second subject.

In their pioneering contribution to develop direct
methods for LEED, Pendry, Heinz and Oed introduced the
idea of reducing the traditional optimization method to a
multidimensional root finding. Starting from a linearized
version of TLEED for the scattering amplitudes, they have
proposed an iterative solution for the related nonlinear system
of equations for intensities [13]. This class of methods
fits all the datapoints simultaneously, since it involves the
minimization of a vectorial function f : �N → �N . Indeed
direct methods based on the holographic approach [14], and the
quasi-direct method proposed by the direct fitting of a subset
of experimental intensities have been the two most promising
routes to find solutions for structural problems that could easily
get out of hand as the system becomes more and more complex.

Multidimensional function minimization techniques can
be classified into local and global. Local methods
(e.g. steepest descent making downhill moves in the R-
factor hypersurface [15–17]) have the advantage of scaling
like the number of unknowns to be found squared (N2),

but they have the disadvantage of exploring only the nearest
single local minimum. Alternatively, global methods allow
uphill moves on the hypersurface to explore several minima
by crossing between ‘valleys’. Most of these methods
work by constructing Markov chains of structures and are
based on the ergodic principle. Some examples are genetic
algorithms (GA) [18], random sampling algorithms (RSA) [19]
and simulated annealing (SA) [20]. All of them would
find the correct global minimum if given infinite time;
however, within a finite time interval the degree of success
varies depending on the particular circumstances and has to
be studied independently, often to optimize the parameters
in the search. As an example of selection of different
parameters, the simulated annealing algorithm is interpreted
as a physical adiabatic cooling performed under quasi-
equilibrium conditions, and the cooling scheme is chosen to
achieve a robust performance [20, 21].

In a previous paper, we have proposed simultaneous
optimization (SO) [22] based on a number of theoretical
simulations, and we have shown it can be successful in two
highly nonlinear scattering problems: single atom phase shift
retrieval from backscattered intensities and surface structure
optimization from LEED simulated data. In the present paper,
the SO method is described in full detail and its performance
is tested against real LEED experimental I (E) data measured
for Cu(100) and Fe0.53Al0.47(100) surfaces. These two systems
have also been studied with RSA, allowing us to take a
benchmark on performance against a different method known
already to be efficient and robust. The SO algorithm consists of
two shells: (i) an inner shell where structures are obtained by
solving nonlinear systems of equations by applying Broyden’s
method [23] (at this point only a random subset of the
experimental database is used) and (ii) an outer shell, where
the structures obtained in the inner shell are validated against
the whole experimental database by using Pendry’s R-factor.

2. The algorithm

Several R-factor prescriptions can be considered for the
structural problem [2]; the basic task consists in comparing
values for calculated and experimental intensity curves, I (E),
but first-and/or second-order derivatives of the I (E) curves
might be used too.

Let us consider a simple and basic R-factor, related
to a least-squares fit between experimental and theoretical
intensities, that has been introduced in the literature by the
name of R2 and can be reduced to a χ2 minimization problem
for the case where all the experimental points have the same
statistical variance [24]:

R ∼
∑

�α
{q th(�x, �α) − qexp(�α)}2 (2)

where q is used to indicate that any convenient function of the
intensities might be used for the comparison, �x = (x1, . . . , xN )

are the N unknown structural parameters, and �α = (Ei; �g)

runs over energies and beams. The full experimental database
is made of intensities measured for different energies, Ei , in
every accessible beam, �g: S = {I�α}, containing ND numbers.
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From quite general statistical arguments, we expect the R-
factor hypersurface to have a number of shallow local minima,
related to random correlations between theory and experiment,
and a few deeper wells due to structural coincidences [20].
Thus, if a downhill method were to be used, an independent
minimization would be needed at every local minimum. Since
the number of minima grows exponentially with N , such a
multiple launch strategy is an NP problem.

A most popular R-factor, RP , has been defined by
Pendry [11]. Intensities are affected by background
contributions of temperature effects and electron damping, so
R-factors that make use of I (E) derivatives are, in general,
more reliable because these contributions are largely cancelled
out. In particular, RP treats all maxima and minima at the
I (E) equally, since all of them contain useful information
about constructive/destructive interference conditions closely
related to the structure. In fact, Pendry’s R-factor compares
the so-called Y -functions, based on logarithmic derivatives,
to highlight all the extrema found in the spectra, and RP

quantifies the agreement between experimental and calculated
Y -functions.

Usually, the set of experimental data, S, contains many
more datapoints, ND , than geometrical parameters in the
model, N . As pointed out by Kleinle et al, R-factors using the
information contained in their derivatives need to be calculated
on a fine grid of energies where some datapoints are correlated.
These authors suggested computing an R-factor that only
depends on intensities on a coarse energy grid [25]. From a
formal point of view, only a small subset of N independent
datapoints SN ∈ S should be needed to uniquely determine the
structure. In practice, however, multiple coincident solutions
might be found for a reduced subset of the experimental
database. A characteristic for the global solution is that it is
independent with respect to different choices for the subset
SN . This kind of procedure constitutes a list of structures
converging to the ‘global’ one, where the starting points do not
need to be chosen at random, but are already partial solutions
to the global problem. The SO algorithm has been designed to
evolve and validate solutions obtained with RP from reduced
database subsets.

We find that in most cases, these restricted subsets
already contain the relevant topographic features of RP ,
although they might also display features not related to the
global hypersurface. Obviously, these solutions constitute far
better trial structures than simple random moves on the RP

hypersurface. However, dealing with experimental or noisy
data makes RP 	= 0 at the global minimum. Therefore,
the global solution is not necessarily a solution of every
partial subset, and determining the global solution can be
more difficult, in particular the algorithm could be trapped
oscillating around different local minima. It is possible to
damp and minimize these oscillations by using overdetermined
systems, because by increasing the size of the system of
equations the local topography becomes more and more similar
to the global one. We have found that for overdetermined
systems of the order of ND = 2N or ND = 3N , the computing
effort at the inner shell remains reasonable, while the efficiency
increases considerably.

Having in mind that our goal is to find the global minimum
in RP , we first define a database subset, S̃ ∈ S, such that
it includes intensities where ∂ I (E;�g)

∂ E ≈ 0 for at least one of
the experimental curves (let us call the cardinal of this subset
ÑD � N). This choice of S̃ is arbitrary, but justified by the fact
that those are the points contributing more to Pendry’s RP .

A system of Neq equations and N unknowns is constructed
with Neq intensities chosen at random inside S̃ . We denote this

subset by: SNeq ∈ S̃ (ÑD � Neq � N). Thus,
(ÑD

Neq

)
different

choices of systems of equations are available. We define the
following function:

fi (�x; Ei) =
∑

�g
|Y th

�g (Ei ; �x) − Y exp
�g (Ei)| = 0;

i = 1, . . . , Neq (3)

where (E1, . . . , ENeq ) is a set of Neq different experimental

points taken from S̃ at random. Summation over beams
is performed to gather as much information as possible
and because it results in a smoother function than the one
corresponding to the �g value associated with the extreme in the
curve. This is relevant, since derivatives need to be calculated
in the inner shell (see section 2.2).

2.1. The outer shell: the Markov chain

The global search starts with a structure chosen at random
inside the physically accessible region. This will be validated
in the outer shell by an iterative process. The kth iteration in
the outer shell starts by calling the inner shell with a structural
candidate, �x (k), and a subset of experimental datapoints, SNeq ,

chosen at random in S̃. The inner shell returns as output of a
structure, �x ′k . Before computing RP for the global database,
which is more expensive from a computational point of view
than invoking the inner shell, it is worth checking that (i) the
new structure, �x ′k , is also a solution for a different choice of
SNeq and (ii) whether the new solution stays within a given
convergence radius from the old one. NPC ∼ N inner shell
calls are made inside the kth iteration on the outer shell to
reduce the number of times RP needs to be computed.

The (k + 1)th iteration begins with a structure, �x (k+1),
incorporating small random modifications over the solution
in the kth iteration. Unlike SA, the modifications are
always accepted, which is known in the literature as blind
random search iterative improvement, and it is a global search
method [26]. Following the RSA idea [19], �x (k+1) is obtained
by considering a Gaussian probability distribution centred
at the solution in the kth iteration, where the width of the
Gaussian, σ , depends on the value of RP (�x ′k), computed at the
end of the kth iteration. Therefore, uphill moves are guaranteed
and the search space size is reduced for small values of RP ,
where long jumps are not necessary.

The partial problem tackled in the inner shell is highly
nonlinear; it might happen that the system solver does not
find the right solution. However, wrong trial structures
coming from the inner shell usually already have a few useful
components, making better candidates than a pure random
blind choice made by conventional algorithms based in the
ergodic theorem. Non-Gaussian probability distributions, such
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as Cauchy–Lorentz, have been used in the literature to generate
a Markov chain of structures [21]. In our case, we have
seen that the distribution shape is not crucial since the system
solver method in the inner shell is already quasi-global, and it
overcomes RP hypersurface simple barriers.

2.2. The inner shell: the system solver

To deal with the problem of solving the highly nonlinear
system �f = 0, a globally convergent algorithm that combines
a multidimensional secant method with a descent strategy is
used [24]. The only requirement is that �f is a continuous
and differentiable function with respect to �x . The i th iteration
moves in a conventional multidimensional secant method,
δ�x (i) = �x (i+1) − �x (i), and is given by:

J̃ (i) · δ�x (i) = − �f (i)

J̃ (i+1) · δ�x (i) = δ �f (i)
(4)

where δ �f (i) = �f (i+1) − �f (i) and J (i)
jk = ∂ f (i)

j

∂x(i)
k

are the Jacobian

matrix elements. In order to save derivative evaluations, we
substitute the exact Jacobian by Broyden’s approximation [23],

J̃ (i+1)

B = J̃ (i)
B + (δ �f (i) − J̃ (i)

B · δ�x (i)) ⊗ δ�x (i)

δ �f (i) · δ �f (i)
(5)

rather than the exact Jacobian J̃ (i+1). The procedure is
initialized with the exact Jacobian. When the system �f = 0 is
overdetermined, the linear system of equations (equation (4))
is solved in a least-squares sense.

However, this method tends to wander around the
parameter space if the starting point is not close enough to the
solution. This can be avoided by embedding the procedure in
a globally convergent strategy that tries to minimize the scalar
function | �f |2. The latter defines a hypersurface that can be
seen as a projection of the global RP onto the data subspace
S ′

Neq
. If we use the exact Jacobian J̃ , δ�x (i) yields already a

descent direction for | �f |2, but the whole step may not make
| �f |2 smaller. To ensure it does, a line search is performed along
this vector,

�x (i+1) = �x (i) + λδ�x (i) (6)

taking the λ value that yields the smallest value of | �f |2.
Sophisticated line searches could be made at this stage [24], but
an equispaced sampling along the line is found to be enough for
our purposes. Finally, at the end of each iteration, the exiting
criterion is checked. We use convergence in the modulus of �x
as the exiting condition:

|�x (i+1) − �x (i)| < xmin. (7)

This method is non-local, because, even if the line search
takes place along a descent direction of | �f |2, a longer step can
overcome a hypersurface barrier. If J̃ (i+1)

B deviates from the
descent direction, the procedure can be restarted with the exact
Jacobian.

Every solution to equation (3) minimizes | �f |2. However,
equation (3) may eventually have multiple solutions, and only

one of them coincides with the global minimum of the R-
factor. The others correspond to local minima of the R-factor.
In fact, the | �f |2 hypersurface shares topographic features with
the R-factor.

However, that is true only for the ideal case of perfect
agreement between theory and experiment at the global
minimum, where RP = 0. In a realistic scenario, the global
minimum has RP > 0. This implies that there might exist
partial problems that do not possess a solution at the global
minimum. Adding more datapoints to the partial problem
should filter out oscillations near the R-factor minima and
reconcile the partial problem topographies. We define the
oversampling factor Nov for the partial problem such that
the systems contain Neq = Nov × N equations and N
unknowns, and solve linear equations (4) in a least-squares
sense. Although Nov should be chosen for each specific
problem according to the fit quality, the condition ND  Neq

must hold in order to keep the partial problem tractable at a low
computational cost.

2.3. Scaling law estimate

By construction, each Broyden approximate Jacobian evalua-
tion requires 2N intensity evaluations, while the exact Jacobian
would need N2. The line search makes a constant number of
evaluations, and RP is evaluated every NPC ∼ N partial prob-
lem calls. Thus, the total scaling exponent is β ≈ 2 before
entering the Markov chain. On the other hand, we can expect
the outer shell to have a maximum scaling similar to the RSA
algorithm, which has an exponent β ≈ 2.5 [19]. Notice that
the present estimate considers the number of intensity evalua-
tions only, and not other N-dependent operations present in the
algorithm that affect the total computation time, such as matrix
inversions. This analysis gives an upper boundary value for the
exponent, β � 4.5. SO yields efficient scaling laws because the
structures entering the Markov chain are by construction par-
tial solutions to the global problem, i.e. the outer shell is simi-
lar to an importance sampling, rather than to a standard random
sampling. In fact, we have already seen in the statistical results
from noiseless simulated LEED I (E) data of the Ir(110)-p(2×
1) surface, that SO yields an exponent β = 4.1 ± 0.1 [22]. A
comparable value, β = 3.5 ± 0.2, was found in the atomic
phase shift retrieval from noiseless backscattered intensities
from a single atom [22].

From the arguments above, it is expected that the use
of overdetermined nonlinear systems will affect the scaling
exponent only slightly, though the total computational effort
will increase. This has been observed in the problem of atomic
phase shift retrieval from single atom noisy backscattered
intensities [22]. In that example, a convincing success rate
could be obtained at low values of Nov. Adding 5% of Gaussian
noise in the intensities and applying oversampled SO resulted
in a scaling law exponent β = 4.4 ± 0.3, this value slightly
increased to β = 4.8 ± 0.4 when the noise was 10%. For both
noise values, the success rate above 90% could be routinely
obtained using Nov = 2 when searching for lmax < 5 phase
shifts, and Nov = 4 for lmax � 5.
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The main quantity used to describe the efficiency of SO is
the computing effort, defined as the expected value

〈t〉 = 〈Ncall〉
Ne

(8)

where Ncall is the number of individual intensity evaluations
and Ne is the number of energy points per I (E) curve. In
those previously published theory–theory benchmarks [22], it
was found that for each value of N the probability distribution
function (PDF) of a number Nstat of independent searches
shows a peak at low t values and is exponentially decreasing.
Interestingly, it can be fitted to a one-event Poisson-like
distribution:

p(t) = w2te−wt . (9)

This is the PDF of a single random event taking place in a
predetermined time interval between t and t + dt , the event
being that SO finds the global minimum. The area under p(t),

P(t) =
∫ t

0
p(t ′) dt ′ = 1 − (1 + wt)e−wt (10)

gives the success rate of a search that uses a computing effort t .

3. Results with experimental data

3.1. Clean Cu(100) surface

SO performance has been benchmarked using experimental
normal incidence LEED I (E) curves from a clean Cu(100)
surface. Pendry’s R-factor, RP , is used to quantify the
agreement between experimental and calculated spectra. The
experimental data were taken at a low temperature (90 K)
in order to reduce thermal diffuse scattering (details can be
found elsewhere [27]). The sample quality was good (common
impurities, such as C, O and S, were below the Auger detection
limit) and the I (E) curves were reproducible with RP < 0.02.
RP values among symmetry related beams lying below 0.04,
ensuring a correct sample alignment. Previous dynamical
analyses of this surface have been reported in [27] and [28].
It was found that it is necessary to introduce an energy
dependent inner potential (Vor(E)) in order to accurately
reproduce the correct lattice parameter, a0 = 2.55 Å [28]. A
theoretical model for Vor(E) can be parametrized from first
principles [29]. When a constant Vor is used, the I (E) fit
yields a contracted in-plane lattice parameter value of a0 =
2.53 Å [27]. This deviation of hundredths of Å lies beyond
the RP variance limit due to the systematic error caused
by neglecting Vor(E). To discuss the efficiency of the SO
algorithm when fitting geometrical data, for simplicity, we will
restrict ourselves to a constant Vor, use the smaller a0 = 2.53 Å
and keep Debye parameters fixed at their optimum values. The
database used in this work consists of four beams, namely
(10), (11), (20) and (21), measured in the energy range 55–
410 eV and producing a total data base width of 
E = 940 eV.
The maximum energy has been chosen to be smaller than the
500 eV used in the original calculations [27], so as to make
the Vor(E) dependence less relevant for the fit. A maximum
angular momentum number lmax = 11 achieves convergence
such that differences in RP are smaller than 0.001.

An energy-averaged value of Vor is also to be fitted.
Conventional directed algorithms act upon the whole I (E)

curve, so that it is usually enough to apply a rigid shift to
the I (E) curve to make peaks coincide and obtain a good
estimate of Vor. The straight-forward way of introducing Vor

in a SO search would be to use it only in the outer shell
of the algorithm. In the first iterations, when calculated and
experimental I (E) curves are poorly correlated, the estimated
value of Vor will be, in general, in disagreement with the
actual value. If this incorrect Vor is kept fixed during inner
shell iterations, it will prevent the algorithm from approaching
the solution. A better strategy consists in considering Vor

as an extra unknown in the inner shell, thus adding another
equation to the system. We have used this second procedure in
subsequent calculations.

As a reference, we will use the structure determined full-
dynamically by Müller et al [27], with a0 = 2.53 ± 0.01 Å for
the lattice parameter, and the following interlayer distances
(ordered from vacuum to bulk): d1 = 1.765 ± 0.005 Å, d2 =
1.805±0.010 Å, d3 = 1.80±0.01 Å, d4 = 1.79±0.02 Å, d5 =
1.80±0.03 Å, d6 = 1.79±0.04 Å, and bulk interlayer distance
db = 1.79 ± 0.07 Å. Deeper vertical distances have larger
error bars because of electron attenuation. Other non-structural
parameters are Voi = 4.68 eV, and isotropic thermal vibration
amplitudes v1 = 0.12 Å for the topmost layer atoms and
vb = 0.07 Å for subsurface atoms, determined within a Debye–
Waller-like approach. These values yield a minimum RPmin =
0.085±0.013 for a database of size 
E = 1600 eV, where the

R-factor variance is var(RP,min) = RP,min

√
8Voi

E [11]. If the

reduced database (
E = 940 eV) is used, the same structure
yields RP,min = 0.15 ± 0.03. We shall use this value to define
the lowest boundary for exiting conditions of the statistical
searches as RP < RP,min + var(RP,min). Thus, for N = 6
interlayer distances, the search is finished when RP < 0.18.
For smaller values of N , best fit structures yield larger RP,min

values: RP,min(N = 2) = 0.18, RP,min(N = 3) = 0.17,
RP,min(N = 4) = 0.16 and RP,min(N = 5) = 0.16. The
corresponding variance is ∼0.03. Therefore, the following
search exiting RP values are used: 0.21 for N = 2, 0.20 for
N = 3 and 0.19 for N = 4, 5.

In order to examine the behaviour of SO when handling
real experimental data, we perform Nstat equivalent statistical
searches using random starting points inside the search space,
which will be used to evaluate averages. The search space
consists of the topmost N interlayer spacings of the Cu(100)
surface, plus a constant value of Vor in the range 2–10 eV.
Intensities are calculated in the energy range 55–410 eV with
a step of 3 eV. Thus, the nonlinear systems of equations in the
inner shell contain N + 1 unknowns. Size effects have been
modelled using two different search spaces of hypervolume
1 Å

N
and (0.4 Å)N . The latter corresponds to the usual tensor-

LEED applicability range.
Figure 1 shows the RP map for N = 2 in the 1 Å

2
space.

The global minimum is located (d1, d2) = (1.75, 1.81) Å with
RP = 0.18, and also a few secondary deep wells with RP �
0.5 are found. The surface shows a strong corrugation, and
several local shallow minima with RP ∼ 0.8. As pointed
out by Rous et al [16], this topological feature is independent
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Table 1. Average t values corresponding to histograms of figure 1. 〈t〉 is the histogram average, 〈t〉E = 2/w is the expected value obtained
after a least-squares fit of the histograms to a function p(t) = w2te−wt and 〈t〉P (P = 0.90, 0.9998) are the average t values needed to get a
successful search with P probability. The values marked by (*) have been obtained from a fit to p(t) = λe−λt .

0.4 Å
3

1 Å
3

Nov 〈t〉 〈t〉E 〈t〉0.90 〈t〉0.9998 〈t〉 〈t〉E 〈t〉0.90 〈t〉0.9998

1 160 ± 10 146 ± 6 284 805 1620 ± 150 (*) 1270 ± 160 3729 (*) 13 793 (*)
2 100 ± 6 88 ± 4 170 482 1050 ± 120 960 ± 100 1873 5 297
3 110 ± 7 97 ± 5 188 532 1550 ± 150 (*) 1600 ± 300 3578 (*) 13 235 (*)

Figure 1. RP map for Cu(100) data in a search space of area 1 Å
2
.

Parameters (d1, d2) are the two topmost interlayer spacings. The real
part of the inner potential is also optimized for each structure. The
global minimum (RP,min = 0.18) is located at
(d1, d2) = (1.75, 1.81) Å. Secondary deep minima appear at
(d1, d2) = (2.14, 1.45) Å with RP = 0.42,
(d1, d2) = (1.75, 1.48) Å with RP = 0.48, and
(d1, d2) = (1.30, 2.20) Å with RP = 0.50.

of the surface structure. Secondary deep minima are due
to Bragg coincidences with the actual structure and shallow
minima are due to random correlation between experimental
and theoretical spectra. The (0.4 Å)2 area boundaries are
1.57 and 1.97 Å, respectively. This search space contains
several local minima but no secondary deep minima. Due
to these differences in the RP hypersurface topography,
differences in the scaling law between both search spaces
appear.

The effect of different degrees of overdetermination in the
inner shell has been benchmarked for N = 3. Figure 2 shows
the PDF of the computing effort t at values Nov = 1, 2, 3 on
both search volumes. Nstat = 100 and 50 on 1 Å

3
and (0.4 Å)3,

respectively. In both cases, Nov = 2 appears to be a well
converged value, and further overdetermination does not cause
significant improvements in the efficiency.

For (0.4 Å)3, the PDFs are non-symmetric, show a peak at
low values of t and decay exponentially. The histograms can
be fitted by least-squares to equation (9). If plain SO is used,
i.e. Nov = 1, decay is clearly slower. However, in the 1 Å

3

volume the Nov = 1, 3 histograms do not show a peak, and are
better fitted by an exponential function λe−λt . Table 1 contains
some average values obtained from those PDFs.

Figure 3 shows a log–log plot of the scaling law,
represented in terms of the average computing effort 〈t〉 as a

a

b

Figure 2. Panel (a) Cu(100) data in a search space of size 0.4 Å with
Nstat = 100. Panel (b) Cu(100) data in a search space of size
1 Å with Nstat = 50. Search parameters are the three topmost
interlayer spacings. The real part of the inner potential is also
optimized for each structure. Searches are made under different inner
shell oversampling conditions: Nov = 1 (solid line), 2 (dashed) and 3
(dotted).

function of N . In both cases, the scaling law can be fitted to a
polynomial law, 〈t〉 ∝ Nβ , where β = 3.45 ± 0.02 for 1 Å

N

and β = 2.3 ± 0.2 for (0.4 Å)N . Averages are calculated upon
Nstat = 20 and 40 for each N value, respectively. Figure 4
shows the average number of RP evaluations, 〈tRP 〉, at different
N . Least-squares fits to 〈tRP 〉 ∝ NβRP yield exponents βRP =
1.93 ± 0.07 for 1 Å

N
and βRP = 1.0 ± 0.2 for 0.4 Å

N
.

6



J. Phys.: Condens. Matter 20 (2008) 304201 M Blanco-Rey et al

Figure 3. Scaling law for Cu(100) data with search spaces of sizes
1 Å

N
(squares) and (0.4 Å)N (circles) together with the

corresponding least-squares fits to a polynomial law.

3.2. Fe0.53Al0.47(100)-1 × 1

Annealing of alloy surfaces may result in deviations of
chemical composition in the surface region with respect to that
of the bulk. Segregation in alloy surfaces is a well-known
phenomenon that has been investigated in a number of binary
alloys (see, for example, [30] and references therein). In the
present section, we use experimental LEED I (E) data from
a Fe0.53Al0.47(100)-1 × 1 surface to benchmark the ability of
SO to fit non-geometrical data, namely impurity concentration
and/or thermal vibration amplitudes. FeAl crystal structure is
of CsCl type, and the stoichiometric (100) surface consists of
alternating Al and Fe layers. FeAl crystals exhibit a rich phase
diagram, and the surface structure strongly depends on both
the bulk stoichiometry and annealing temperature. Annealing
of a Fe0.53Al0.47(100) surface at 650 K results in a c(2 × 2)
reconstruction, whilst annealing at temperatures above 880 K
produces a sharp 1 × 1 LEED pattern. We shall focus on
the latter. Experimental details on surface preparation and
spectra measurements can be found elsewhere [19, 31]. Early
quantitative LEED calculations on this sample determined
that the (100) face is Al-terminated, yielding a satisfactory
RP = 0.12 and the following interlayer distances: d1 =
1.24 ± 0.02 Å, d2 = 1.49 ± 0.02 Å, d3 = 1.47 ± 0.02 Å (the
lattice parameter is a0 = 2.894 Å [31]). The same analysis
yields a ∼20% Al impurity concentration in the second layer.
Since interstitial site formation is energetically unfavourable in
FeAl, this result can be attributed to the strong contraction of
the outermost Fe plane.

Another possible explanation is found in the coupling
between chemical and vibrational parameters, which occur in
LEED intensities via the Debye–Waller factor, if the average
t-matrix approximation is used [32]. Blum et al [33] revisited
this surface and found that the best structure fit can be achieved
by either: (i) fitting the second Fe layer concentration of Al
impurities, c2 and the topmost Al atomic vibration amplitude
v1, or (ii) fitting two different vibration amplitudes v1 and v2

for the first Al and second Fe layers, respectively. Considering
Vor(E), too, these fits yielded improved R-factors, RP = 0.091

Figure 4. Scaling law for the number of R-factor evaluations in
Cu(100) data with search spaces of sizes 1 Å

N
(squares) and

(0.4 Å)N (circles) together with the corresponding least-squares fits
to a polynomial law.

and RP = 0.081, respectively. Both fits are equally favourable,
as they lie within the systematic error limits of the LEED
analysis.

The experimental database consists of eight beams
measured at T = 120 K in the energy range 40–500 eV with a
step of 3 eV, producing a total data base width 
E = 1880 eV.
The beam list is {(10), (11), (20), (21), (22), (30), (31), (32)}.
In the I (E) evaluations, lmax = 10 provides convergence,
and the imaginary part of the inner potential is kept fixed at
Voi = 6 eV. We use RP � 0.12 as the exiting condition for SO.
Independent searches have been made for N = 6 parameters:
Vor, three structural and two non-structural parameters. Vor

lies in the range 6–14 eV. Structural parameters are the three
topmost interlayer distances, d1, d2, d3, in the ranges d1 =
1.16–1.46 Å, d2 = 1.30–1.60 Å and d3 = 1.36–1.56 Å. The
two non-structural parameters are, according to Blum et al
[33], (i) c2 and v1, or (ii) v1 and v2. c2 lies in the range
0–50% and the vibration amplitudes lie in the range 0.087–
0.15 Å. Other vibrations are kept fixed at their bulk values,
namely: vb(Fe) = 0.09 Å and vb(Al) = 0.12 Å. We have
performed Nstat = 40 statistical searches for each type of fit
using Nov = 2. The corresponding computing effort PDFs are
shown in figure 5, and average values are 〈t〉 = 570 ± 70 for a
type (i) search and 〈t〉 = 470 ± 70 for type (ii).

4. Discussion

The simultaneous optimization (SO) algorithm has been
successfully applied to parameter extraction from highly
nonlinear scattered intensities in ideal scenarios, namely phase
shift retrieval from single atom electron scattering and surface
structure recovery from simulated LEED I (E). In these
examples, SO has performed efficiently, and works well
with minimal data sets in the inner shell, i.e. it uses N
datapoints S ′ = (E1, . . . , EN ) to fit N parameters �x =
(x1, . . . , xN ). The inner shell solves a nonlinear system of
equations, a problem which is equivalent to finding the global
minimum of a projected R-factor on the S ′ data subset. The
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Figure 5. PDFs of the computing effort in FeAl searches using two
types of non-structural parameters. The solid line corresponds to
fitting c2 and v1, and the dotted line to fitting v1 and v2. Both
histograms are built upon Nstat = 40 independent searches.

solutions provided by the system solver must be validated
against the whole data base in an outer shell by evaluating
the R-factor. Therefore, SO can explore a large number of
meaningful configurations in the investigated hypervolume at
a low computational cost. The configurations provided by the
inner shell have been shown to exhibit local minima of the
R-factor at the worst case (i.e. when the system solver fails
to return a solution to the system because it stagnates at a
local minimum of the projected R-factor). However, when
dealing with real experimental databases this is not always the
case. We have found that it is not guaranteed that solutions
to the partial problems correspond to local minima of the R-
factor, as spurious peaks in the experimental spectra may be
eventually fitted. Therefore, we generalize the implementation
of SO so it can be applied to realistic situations with the same
efficiency or robustness as in the theoretical case. Spurious
peak fitting results in high frequency corrugation of the R-
factor hypersurface. By using overdetermined systems of
equations, i.e. taking S ′ = (E1, . . . , ENeq ) with Neq > N ,
SO can filter out those corrugations, since the projected R-
factor topography captures more features of the global R-
factor. This method has been benchmarked using experimental
LEED I (E) curves in the Cu(100) surface and a search
space of hypervolume 1 Å

N
. After determining the optimum

oversampling degree, it is found that the computational effort
scales polynomially as Nβ , with exponent β = 3.45 ± 0.02,
a value which is of the same order as the previously found
exponent for SO working under ideal noiseless conditions. It
is noteworthy that only Neq = 2(N + 1) are needed in the
inner shell to achieve convergence in the search success rate,
as shown in figure 2 for N = 3. Since Neq � ND , it is ensured
that the number of different system choices is high enough to
ensure ergodicity.

As expected, the search space size affects the scaling
behaviour. In particular, if we restrict the hypervolume
sufficiently to contain only one minimum inside (local or not)
and if we use gradient-directed methods, we expect an ideal
scaling, β = 2. It is interesting to notice that the best possible
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Figure 6. RP map for Fe0.53Al0.47(100) data as a function of
(a) (v1, c2) or (b) (v1, v2) (see text), with structural parameters fixed
at their best fit values.

scaling law, β = 1, implies that RP depends linearly on the
parameters, and the searching hypervolume is such that the
minimum stays in one of the corners of the simplex. These
are too restrictive conditions, and are not likely to happen for
complex problems. On the other hand, the 1 Å

N
hypervolume

size is big enough to contain in most of the cases several local
minima in the RP hypersurface [20], as we have confirmed in
our calculations (figure 1). Therefore, it is not surprising that
by reducing the searching hypervolume the exponent decreases
towards the ideal value of 2. Statistical search averages yield
an exponent β = 2.3 ± 0.2 for the same system in a (0.4 Å)N

hypervolume (see figure 3), which is similar to the value β =
2.5 found for RSA working in a space of the same size [19]. As
shown in figure 4, the number of RP evaluations in the outer
shell is a linear function of N in the smaller space, while it is
quadratic in 1 Å

N
. Therefore, we conclude that the total scaling

law of SO in the former case appears to be dominated by the
inner shell, explaining the high efficiency of the method.

We have also tested the applicability of SO to non-
geometrical parameter retrieval. Introducing Vor in the search
as an additional parameter does not alter significantly the
scaling law in the Cu(100) example. Other non-structural
parameters, such as vibrational and chemical ones, can be
optimized by SO. In the studied application, Fe0.53Al0.47(100),
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Al intermixing in the second layer and surface vibration
amplitude are satisfactorily characterized by SO using 〈t〉 =
570, which is more than the reported value for the RSA
algorithm (345 trial structures) working under equivalent
search conditions [19]. Interestingly, corrugation in the RP

topography is mainly due to structural parameters. Figure 6
shows RP as a function of chemical and/or vibrational
parameters with structural parameters fixed at their best fit
values. Both maps have a deep flat minimum. Therefore,
we expect that the statistics in this example are biased by the
search for interlayer spacings.

5. Conclusions

The simultaneous optimization (SO) algorithm has been
applied to experimental LEED data and characterized in detail
so it can be compared with other alternatives in the literature.
The use of noisy experimental LEED data does not imply
a reduction of reliability or efficiency with respect to its
performance on ideal noiseless databases [22]. SO brings
together two apparently contradictory widespread concepts in
structural work by LEED: while large parts of the database
are redundant and promising structures can be obtained from a
reduced number of datapoints [34], one must keep in mind that
only by using large experimental databases can high accuracy
and reliability be obtained. Finally, the use of the ergodic
principle confers global character to the search [20].
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